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The power-law central field examined here is defined by f∝r0.75 where r is the 
distance from the center of the galaxy and f is the gravitational force towards 
the center of the galaxy.

A hypothetical galactic disk is constructed, made from concentric orbital 
streamlines, all centred on the galactic centre. Each streamline is assumed to 
be comprised of a very large quantity of particles. The behaviour of each 
streamline is measured by numerical integration software, purely by applying 
the power-law central force. A scale-free dimensionless system of units for 
mass and distance and time is used, in which the gravitational constant G=1. 

At first all the streamlines are given an identical axis ratio of 0.4826. This 
causes every streamline to precess at a slightly different precession rate (as 
illustrated by the red line in Figure 3). The different precession rates will 
gradually cause each streamline to intersect with or collide with its inner and 
outer neighbours, making the long-term existence of the disk impractical. In 
other words, the disk has a winding problem.

In most power-law central fields the angle between successive apocentres, 
and thus the apsidal precession rate, is a function of the streamline's axis 
ratio, see references [1] [2] [3] [4]. For a centered elliptical streamline with a 
given apocentre distance in the central power-law field f∝r^0.75, increasing 
the axis ratio of the streamline (making the streamline more circular) will 
increase its precession rate, whereas decreasing the axis ratio (making the 
streamline more elliptical) will decrease its precession rate.   

It follows that by carefully adjusting the axis ratios of the orbital streamlines, it 
may be possible to adjust all their precession rates. The aim here is to make 
all the streamlines precess at one single common rate and furthermore to 
ensure that they are non-intersecting. Therefore the axis ratio of each 
streamline is carefully tuned (by slightly adjusting its speed at apocentre) until 
its precession rate equals the precession rate of the reference streamline.



Starting with a reference streamline at apocentre distance = 1, its precession 
rate is measured. Next the axis ratios of its inner and outer neighbours are 
carefully adjusted to achieve that same precession rate. This continues by 
making a similar adjustment to every streamline. The result is that every 
streamline is now slightly more circular than its inner neighbour, and slightly 
less circular than its outer neighbour. In other words, the smaller streamlines 
are more elliptical, and the larger streamlines are less elliptical. This is a 
carefully tuned negative ellipticity gradient. The resulting set of streamlines is 
illustrated in Figure 1.

The right pane of Figure 1 is a magnification of the central area of the left 
pane. The left pane shows the larger streamlines with apocentre distances 
from 0.1 to 2. The right pane shows the smaller streamlines with apocentre 
distances from 0.01 to 0.1.

The axis ratio is defined as the streamline’s minor axis divided by its major 
axis. The tuned axis ratios of the streamlines are graphed in Figure 2.

Figure 1: tuned orbital streamlines in field f∝r^0.75 



The tuning of the streamlines succeeds up to an axis ratio of 0.8363 (see the 
largest streamline in fig 1). At axis ratios larger than that, it becomes 
increasingly difficult or impossible to achieve the reference precession rate. 
Therefore a maximum axis ratio of approximately 0.84 appears to define a 
limit beyond which this disk probably cannot be further extended outward.   

The smallest streamline shown in Figure 1 has axis ratio of 0.1531. It is 200 
times smaller than the largest streamline, but has an equal precession rate,. 
This is achieved because of its very different axis ratio (0.1531 versus 
0.8363). It is possible to extend the disk even further inwards by adding even 
smaller streamlines.

The green data in Figure 3 shows the nearly equal precession rates which 
are achieved after the streamlines have been tuned by adjusting their axis 
ratios. In contrast the red data shows the diverse precession rates which 
occurred when every streamline had the same axis ratio = 0.4826.

Figure 2: tuned axis ratios of orbital streamlines in field f∝r^0.75



Data is listed in Figure 4. The apocentre velocities have been provided so 
that these findings can be replicated. 

The precession rate of the streamlines is about 0.02921 radians per time unit, 
therefore the precession period is about 215 time units (this is the time it 
takes the shapes of the streamlines to precess around a complete circle). 

Comparing the precession period with the orbital periods illustrates that 
during the time that it takes for the shapes of the streamlines to precess all 
the way around a complete circle, every particle in the largest streamline 
completes about 31.8 orbits, every particle in the reference streamline 
completes about 35.6 orbits, and every particle in the smallest streamline 
completre about 63.4 orbits. The precession is prograde (in the same 
direction as the orbits).  

Figure 3: tuned (green) and untuned (red) precession rates in field f∝r^0.75



Figure 4: data for orbital streamlines in field f∝r^0.75 
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